Multitask Learning by Multiwave Optical Diffractive Network
نویسندگان
چکیده
منابع مشابه
N-Best Reranking by Multitask Learning
We propose a new framework for N-best reranking on sparse feature sets. The idea is to reformulate the reranking problem as a Multitask Learning problem, where each N-best list corresponds to a distinct task. This is motivated by the observation that N-best lists often show significant differences in feature distributions. Training a single reranker directly on this heterogenous data can be dif...
متن کاملUnifying Multi-domain Multitask Learning: Tensor and Neural Network Perspectives
Multi-domain learning aims to benefit from simultaneously learning across several different but related domains. In this chapter, we propose a single framework that unifies multi-domain learning (MDL) and the related but better studied area of multi-task learning (MTL). By exploiting the concept of a semantic descriptor we show how our framework encompasses various classic and recent MDL/MTL al...
متن کاملLeveraging Domain Knowledge in Multitask Bayesian Network Structure Learning
Network structure learning algorithms have aided network discovery in fields such as bioinformatics, neuroscience, ecology and social science. However, challenges remain in learning informative networks for related sets of tasks because the search space of Bayesian network structures is characterized by large basins of approximately equivalent solutions. Multitask algorithms select a set of net...
متن کاملExploiting Task Relatedness for Multitask Learning of Bayesian Network Structures
We address the problem of learning Bayesian networks for a collection of unsupervised tasks when limited data is available and a metric of the relatedness of tasks is given. We exploit this valuable information about taskrelatedness to learn more robust structures for each task than those learned with a standard multitask learning algorithm. Our approach is the first network structure learning ...
متن کاملMultilinear Multitask Learning
Many real world datasets occur or can be arranged into multi-modal structures. With such datasets, the tasks to be learnt can be referenced by multiple indices. Current multitask learning frameworks are not designed to account for the preservation of this information. We propose the use of multilinear algebra as a natural way to model such a set of related tasks. We present two learning methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2020
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2020/9748380